Python Inheritance

Inheritance enables us to define a class that takes all the functionality from a parent class and allows us to add more. In this tutorial, you will learn to use inheritance in Python.

Inheritance in Python

Inheritance is a powerful feature in object oriented programming.

It refers to defining a new class with little or no modification to an existing class. The new class is called derived (or child) class and the one from which it inherits is called the base (or parent) class.


Python Inheritance Syntax

class BaseClass:
  Body of base class
class DerivedClass(BaseClass):
  Body of derived class

Derived class inherits features from the base class where new features can be added to it. This results in re-usability of code.


Example of Inheritance in Python

To demonstrate the use of inheritance, let us take an example.

A polygon is a closed figure with 3 or more sides. Say, we have a class called Polygon defined as follows.

class Polygon:
    def __init__(self, no_of_sides):
        self.n = no_of_sides
        self.sides = [0 for i in range(no_of_sides)]

    def inputSides(self):
        self.sides = [float(input("Enter side "+str(i+1)+" : ")) for i in range(self.n)]

    def dispSides(self):
        for i in range(self.n):
            print("Side",i+1,"is",self.sides[i])

This class has data attributes to store the number of sides n and magnitude of each side as a list called sides.

The inputSides() method takes in the magnitude of each side and dispSides() displays these side lengths.

A triangle is a polygon with 3 sides. So, we can create a class called Triangle which inherits from Polygon. This makes all the attributes of Polygon class available to the Triangle class.

We don’t need to define them again (code reusability). Triangle can be defined as follows.

class Triangle(Polygon):
    def __init__(self):
        Polygon.__init__(self,3)

    def findArea(self):
        a, b, c = self.sides
        # calculate the semi-perimeter
        s = (a + b + c) / 2
        area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
        print('The area of the triangle is %0.2f' %area)

However, class Triangle has a new method findArea() to find and print the area of the triangle. Here is a sample run.

>>> t = Triangle()

>>> t.inputSides()
Enter side 1 : 3
Enter side 2 : 5
Enter side 3 : 4

>>> t.dispSides()
Side 1 is 3.0
Side 2 is 5.0
Side 3 is 4.0

>>> t.findArea()
The area of the triangle is 6.00

We can see that even though we did not define methods like inputSides() or dispSides() for class Triangle separately, we were able to use them.

If an attribute is not found in the class itself, the search continues to the base class. This repeats recursively, if the base class is itself derived from other classes.


Method Overriding in Python

In the above example, notice that __init__() method was defined in both classes, Triangle as well Polygon. When this happens, the method in the derived class overrides that in the base class. This is to say, __init__() in Triangle gets preference over the __init__ in Polygon.

Generally when overriding a base method, we tend to extend the definition rather than simply replace it. The same is being done by calling the method in base class from the one in derived class (calling Polygon.__init__() from __init__() in Triangle).

A better option would be to use the built-in function super(). So, super().__init__(3) is equivalent to Polygon.__init__(self,3) and is preferred. To learn more about the super() function in Python, visit Python super() function.

Two built-in functions isinstance() and issubclass() are used to check inheritances.

The function isinstance() returns True if the object is an instance of the class or other classes derived from it. Each and every class in Python inherits from the base class object.

>>> isinstance(t,Triangle)
True

>>> isinstance(t,Polygon)
True

>>> isinstance(t,int)
False

>>> isinstance(t,object)
True

Similarly, issubclass() is used to check for class inheritance.

>>> issubclass(Polygon,Triangle)
False

>>> issubclass(Triangle,Polygon)
True

>>> issubclass(bool,int)
True

Python Object Oriented Programming

In this tutorial, you’ll learn about Object-Oriented Programming (OOP) in Python and its fundamental concept with the help of examples.

Object Oriented Programming

Python is a multi-paradigm programming language. It supports different programming approaches.

One of the popular approaches to solve a programming problem is by creating objects. This is known as Object-Oriented Programming (OOP).

An object has two characteristics:

  • attributes
  • behavior

Let’s take an example:

A parrot is can be an object,as it has the following properties:

  • name, age, color as attributes
  • singing, dancing as behavior

The concept of OOP in Python focuses on creating reusable code. This concept is also known as DRY (Don’t Repeat Yourself).

In Python, the concept of OOP follows some basic principles:


Class

A class is a blueprint for the object.

We can think of class as a sketch of a parrot with labels. It contains all the details about the name, colors, size etc. Based on these descriptions, we can study about the parrot. Here, a parrot is an object.

The example for class of parrot can be :

class Parrot:
    pass

Here, we use the class keyword to define an empty class Parrot. From class, we construct instances. An instance is a specific object created from a particular class.


Object

An object (instance) is an instantiation of a class. When class is defined, only the description for the object is defined. Therefore, no memory or storage is allocated.

The example for object of parrot class can be:

obj = Parrot()

Here, obj is an object of class Parrot.

Suppose we have details of parrots. Now, we are going to show how to build the class and objects of parrots.

Example 1: Creating Class and Object in Python

class Parrot:

    # class attribute
    species = "bird"

    # instance attribute
    def __init__(self, name, age):
        self.name = name
        self.age = age

# instantiate the Parrot class
blu = Parrot("Blu", 10)
woo = Parrot("Woo", 15)

# access the class attributes
print("Blu is a {}".format(blu.__class__.species))
print("Woo is also a {}".format(woo.__class__.species))

# access the instance attributes
print("{} is {} years old".format( blu.name, blu.age))
print("{} is {} years old".format( woo.name, woo.age))

Output

Blu is a bird
Woo is also a bird
Blu is 10 years old
Woo is 15 years old

In the above program, we created a class with the name Parrot. Then, we define attributes. The attributes are a characteristic of an object.

These attributes are defined inside the __init__ method of the class. It is the initializer method that is first run as soon as the object is created.

Then, we create instances of the Parrot class. Here, blu and woo are references (value) to our new objects.

We can access the class attribute using __class__.species. Class attributes are the same for all instances of a class. Similarly, we access the instance attributes using blu.name and blu.age. However, instance attributes are different for every instance of a class.


Methods

Methods are functions defined inside the body of a class. They are used to define the behaviors of an object.

Example 2 : Creating Methods in Python

class Parrot:
    
    # instance attributes
    def __init__(self, name, age):
        self.name = name
        self.age = age
    
    # instance method
    def sing(self, song):
        return "{} sings {}".format(self.name, song)

    def dance(self):
        return "{} is now dancing".format(self.name)

# instantiate the object
blu = Parrot("Blu", 10)

# call our instance methods
print(blu.sing("'Happy'"))
print(blu.dance())

Output

Blu sings 'Happy'
Blu is now dancing

In the above program, we define two methods i.e sing() and dance(). These are called instance methods because they are called on an instance object i.e blu.


Inheritance

Inheritance is a way of creating a new class for using details of an existing class without modifying it. The newly formed class is a derived class (or child class). Similarly, the existing class is a base class (or parent class).

Example 3: Use of Inheritance in Python

# parent class
class Bird:
    
    def __init__(self):
        print("Bird is ready")

    def whoisThis(self):
        print("Bird")

    def swim(self):
        print("Swim faster")

# child class
class Penguin(Bird):

    def __init__(self):
        # call super() function
        super().__init__()
        print("Penguin is ready")

    def whoisThis(self):
        print("Penguin")

    def run(self):
        print("Run faster")

peggy = Penguin()
peggy.whoisThis()
peggy.swim()
peggy.run()

Output

Bird is ready
Penguin is ready
Penguin
Swim faster
Run faster

In the above program, we created two classes i.e. Bird (parent class) and Penguin (child class). The child class inherits the functions of parent class. We can see this from the swim() method.

Again, the child class modified the behavior of the parent class. We can see this from the whoisThis() method. Furthermore, we extend the functions of the parent class, by creating a new run() method.

Additionally, we use the super() function inside the __init__() method. This allows us to run the __init__() method of the parent class inside the child class.


Encapsulation

Using OOP in Python, we can restrict access to methods and variables. This prevents data from direct modification which is called encapsulation. In Python, we denote private attributes using underscore as the prefix i.e single _ or double __.

Example 4: Data Encapsulation in Python

class Computer:

    def __init__(self):
        self.__maxprice = 900

    def sell(self):
        print("Selling Price: {}".format(self.__maxprice))

    def setMaxPrice(self, price):
        self.__maxprice = price

c = Computer()
c.sell()

# change the price
c.__maxprice = 1000
c.sell()

# using setter function
c.setMaxPrice(1000)
c.sell()

Output

Selling Price: 900
Selling Price: 900
Selling Price: 1000

In the above program, we defined a Computer class.

We used __init__() method to store the maximum selling price of Computer. We tried to modify the price. However, we can’t change it because Python treats the __maxprice as private attributes.

As shown, to change the value, we have to use a setter function i.e setMaxPrice() which takes price as a parameter.


Polymorphism

Polymorphism is an ability (in OOP) to use a common interface for multiple forms (data types).

Suppose, we need to color a shape, there are multiple shape options (rectangle, square, circle). However we could use the same method to color any shape. This concept is called Polymorphism.

Example 5: Using Polymorphism in Python

class Parrot:

    def fly(self):
        print("Parrot can fly")
    
    def swim(self):
        print("Parrot can't swim")

class Penguin:

    def fly(self):
        print("Penguin can't fly")
    
    def swim(self):
        print("Penguin can swim")

# common interface
def flying_test(bird):
    bird.fly()

#instantiate objects
blu = Parrot()
peggy = Penguin()

# passing the object
flying_test(blu)
flying_test(peggy)

Output

Parrot can fly
Penguin can't fly

In the above program, we defined two classes Parrot and Penguin. Each of them have a common fly() method. However, their functions are different.

To use polymorphism, we created a common interface i.e flying_test() function that takes any object and calls the object’s fly() method. Thus, when we passed the blu and peggy objects in the flying_test() function, it ran effectively.